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Laboratory experiments and numerical modelling studies have been performed for a 
rotating, thermally driven fluid system in a cylindrical annulus with a vertical 
rotation vector and axis of symmetry. The thermal forcing was through the 
imposition of an axisymmetric temperature gradient on a thermally conducting 
lower boundary, with additional heating through the outer sidewall. The upper and 
inner walls were nominally insulating. Flow patterns were observed in the 
experiments through the use of small, reflective flakes (Kalliroscope) in the working 
fluid, which was water. The rotation rate and temperature difference were varied to 
construct a regime diagram in thermal Rossby number-Taylor number space. The 
curve separating axisymmetric flow from wave flow is ' knee-shaped ', similar to the 
side-heated and -cooled baroclinic annulus which has been extensively investigated 
previously. Very near the transition curve, the initial wavenumber persists 
indefinitely, but well into the wave regime the initial wavenumber is higher than the 
equilibrated value. Far enough into the wave regime, the initial waves have 
wavenumbers several times that of the equilibrated value, and the initial 
disturbances form near the outer wall very early in the experiment. Numerical 
studies indicate that these waves are effective in distributing heat and that they 
occur in a region of positive static stability. These waves rapidly grow inward to fill 
the annulus and reduce in number as weaker waves are absorbed by the stronger 
ones. The period of transition between these waves and the equilibrated long-wave 
pattern is characterized by irregular flow. Closer to the transition curve, the temporal 
transition to longer waves as the flow equilibrates is simpler, with initial waves filling 
the annulus. In  that case, the transition is characterized by a slow process of 
individual waves weakening and merging with adjacent waves. 

1. Introduction 
The fluid dynamics of a rotating system with horizontal temperature gradients is 

fundamental to  geophysical and astrophysical systems, and there have been many 
theoretical and experimental studies of such flows performed. Study of flow in a 
rotating annulus with a temperature difference maintained on the two sidewalls has 
assisted in validating the theory of baroclinic instability (Barcilon 1964), and it 
continues to facilitate the study of nonlinear behaviour in a baroclinic fluid (e.g. 
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Buzyna, Pfeffer & Kung 1989). While the system with thermally conducting 
sidewalls (hereafter called the ‘ conventional ’ annulus) has been extensively 
investigated (reviewed by Hide & Mason 1975), the system with a temperature 
gradient imposed upon thermally conducting horizontal surfaces has been studied 
relatively little. Miller & Fowlis (1986) and Hathaway & Fowlis (1986) investigated 
the flow in a rotating annulus with temperature gradients imposed upon the upper 
and lower surfaces, while the outer and inner walls were nominally insulating. These 
experiments resulted in a range of instabilities from baroclinic waves to small-scale 
convection, including a mix of both types of instabilities which was manifested by 
large-scale waves with irregular wiggles. Hignett, Ibbetson & Kilworth (1981) 
studied the flow in a rotating annulus with the gradient imposed upon the lower 
horizontal surface and with all other surfaces adiabatic. Most of the description of 
their experimental results dealt with steady axisymmetric flow, there being a brief, 
qualitative description of baroclinic waves for rapid enough rotation. Hignett et al. 
(1981) did not attempt to determine the full transition curve for baroclinic waves, 
but apparently studied flow near the ‘upper transition’, which occurs for large AT 
and for which waves occur for large enough rotation rate (with a fixed AT). There 
were no reports of wavenumbers or flow structure for the baroclinic wave regime. 
Koschmeider & Lewis (1986) studied the Hadley circulations in a shallow, full 
cylindrical disk, with a temperature gradient imposed upon the bottom and an 
isothermal condition on top. The rotation rates in the latter study were apparently 
too small to permit baroclinic waves to ensue. 

A system with the temperature profile imposed on the horizontal surface may be 
of interest to atmospheric dynamicists because the surface gradient is not pushed by 
the flow to the sidewalls, as in the conventional annulus. In  this sense, it is more like 
the atmospheric situation which has maximum baroclinicity at  or near the lower 
surface, void of any vertical boundary effects. Furthermore, to be more like the 
atmosphere in the sense of having more nearly horizontal isotherms, it is desirable to 
study a system with a vertical height of less than the annulus width. However, in 
that case the conventional system has a more limited heat-transfer surface. The 
system with the temperature gradient imposed on both horizontal surfaces has some 
scientific advantages (see Miller & Fowlis 1986), but if it is desired to optically view 
the flow patterns through the horizontal surface there is a strong practical 
constraint. The only available transparent, heat-conducting material is synthetic 
sapphire, the expense of which constrains the size of the annulus to be fairly small. 
The present authors decided upon a slightly modified version of the configuration 
used by Hignett et al. (1981). The lower surface is a thermal conductor (copper) and 
the upper lid is a thermal insulator (clear Plexiglas). Besides dimensions, the 
difference between the current annulus and that of Hignett et al. is that the outer wall 
in the present case is made of a heat-conducting material. Numerical design studies 
showed that the use of an insulating vertical wall results in short-wave, convective 
instabilities (some of which were discussed by Hignett et al.) in the outer part of the 
flow cell which complicates the analysis of the longer wavelength modes which are of 
primary interest. The convective modes are suppressed by the use of a thermally 
conducting outer wall. 

The primary purpose of the present work is to provide a general description of the 
first-order behaviour of the system - i.e. the fundamental flow regime (axisymmetric 
or baroclinic wave) and wavenumber in the case of the baroclinic wave regime. For 
a broad range of parameter space, we describe experimental observations of points 
of transition between axisymmetric and wave flow, equilibrated wavenumbers for 
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quasi-steady wave flow, and transient states that occur either prior to equilibrated 
flows or indefinitely. The transient phenomena studied occur on short timescales, as 
long-term time behaviour has not been investigated. Also included are descriptions 
of numerical simulations of the experiments, including some of those aspects 
mentioned in the preceding sentence. The numerical results complement the 
laboratory work by allowing detailed study of the flow features and by selectively 
restricting certain interactions between flow components. 

2. Description of the apparatus 
The flow cell was constructed of thermally conducting bottom and outer walls, and 

insulating upper and inner walls. The inner and outer radii were 7.0 and 13.3 cm, 
respectively, and the depth was 2 cm. In  order to decouple the heat flow within the 
flow cell and that in the solid apparatus containing it, the base of the annulus was 
constructed from copper of thickness 0.63 cm, and the outer wall was made of copper 
3.3 cm thick. The lower surface was electroplated with gold to prevent deterioration 
of the surface, and the outer wall was coated with flat black enamel paint to avoid 
scattering of the laser beam (the purpose of which will be described below). The upper 
lid was made of 1.9cm thick Plexiglas, and the inner wall was of Plexiglas of 
thickness 0.63 cm. The temperature profile was imposed by water baths circulating 
through large annular copper channels which were in firm thermal and mechanical 
contact under the annulus base and outside the flow cell inner and outer radii, as 
shown in figure 1 (a) .  The circulating channels were constructed so that each of the 
water baths made two loops around the annulus in opposite directions for the 
purpose of maintaining axisymmetry of the boundary temperature field (see figure 
1 b ) .  The lid had a small hole (diameter x 0.3 cm) near the outer wall for filling the 
flow cell and to allow for thermal expansion. The hole was filled with a loose-fitting 
plastic plug to reduce the effects of an open cavity upon the flow during the 
experiments. Physical constants and their values are given in table 1. 

Boundary temperatures near the bottom and outer flow cell surface were measured 
by means of glass bead thermistors (0.16cm diameter) which were coated with 
thermally conducting grease and mounted in the copper through holes drilled in the 
bottom of the copper plate and in the outside of the outer wall, i.e. from the outside 
of the flow cell (see figure la ) .  The thermistors, which were not in contact with the 
flow, were about 0.15cm from the flow cell boundary. There was an array of 16 
thermistors in the lower surface and 4 thermistors in the outer wall, the former 
arranged in groups of 4 thermistors at radii of 7.6 cm, 9.3 cm, 11.0 cm, and 12.7 cm, 
each group 90" apart longitudinally. The outer thermistors were a t  the same 
longitudes as the lower ones and were placed at the top edge of the flow cell. The 
resistance of each thermistor was measured with an ohmmeter which was precise to 
better than 0.1% of the resistance of the thermistor, and the temperature was 
obtained by using a third-degree polynomial derived from a least-squares fit to 
calibration data which had been taken a t  1 "C increments for the range of 
temperatures expected (5'-35 'C). The temperatures thus determined were accurate 
to a standard deviation of about 0.01 "C. The circulating baths controlled the 
circulating water temperature to within about f 0.01 "C, with occasional, brief 
excursions of kO.02 "C. Because of the thermal mass of the apparatus, these brief 
excursions were not felt by the working fluid (confirmed by the thermistor readings). 
Measurements of the boundary temperatures a t  various temperature differences 
confirmed the near axisymmetry of the forcing, which had a non-axisymmetry of less 
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FIGURE 1. Schematic sketches of the flow cell annulus cross-section (a) and the water-bath loop 

system (6). In part ( a ) .  the outer wall is to  the right. 

g gravity 980 em s-l 
d vertical depth of flow cell 2.0 cm 
a inner radius of flow cell 7.0 cm 
b outer radius of flow cell 13.3 em 
a thermal expansivity 0.0002054 ("C)-' 
v kinematic viscosity 0.01 1 cm2 s-l 
K thermal conductivity 0.00142 cm2 s-l 

TABLE 1. Physical Constants. 
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than 2 %  of the imposed temperature difference in the flow cell. The temperature 
difference across the flow cell (AT) was estimated by measuring the temperatures for 
one group of four thermistors, fitting a logarithmic curve through those four points, 
and using that curve to extrapolate to the inner and outer radii of the flow cell. The 
AT was about of that of the circulating baths, and the maximum AT available was 
about 16 "C. 

The apparatus was centred on a turntable, model 813/404D by Contraves-Goerz 
Corporation, which was driven by a servo-controlled, permanent-magnet DC motor 
and had both instantaneous and long-term accuracy (manufacturer's specifications) 
of 0.1 Yo of the selected rate or 0.1" per s (whichever is larger). The actual rotation rate 
was not verified independently of the controller supplied with the table. The 
procedure for ensuring a level apparatus and a vertical rotation axis was to level the 
turntable top to within about 0.002 rad, and then to level the apparatus to the same 
accuracy. Lack of wobble in the rotation axis was verified optically through the use 
of a carefully aligned laser beam from above and a flat mirror sitting on the 
apparatus (without the Plexiglas lid). 

The data obtained (other than thermal boundary conditions) consisted of flow 
patterns; no velocity or flow temperature data were taken. The patterns were 
observed through the use of a 0.33% solution of Kalliroscope with deionized water. 
The Kalliroscope consists of small, reflective flakes which become aligned with shear 
in the flow. A laser beam (14  mm wide) was used to assist in the flow visualization. 
The laser beam was directed down the axis of symmetry onto a rapidly spinning 
mirror which was mounted at a 45' angle in the centre of the annulus, thus forming 
an apparent sheet of light. It was found that the use of the laser greatly enhanced 
the visualization. (Without the laser, higher concentrations of Kalliroscope are 
needed.) For the photographs shown here, the laser was centred at a height of about 
0.5 cm from the lower surface of the flow cell. For the determination of points of 
transition from axisymmetric flow to wave flow, an insulating foam was used in the 
centre, above, and around the sides of the annulus. The foam on top and in the centre 
was briefly removed to make observations of the flow. It was found that significant 
differences in the transition points were obtained with and without the foam; when 
the foam was included, the results were much closer to the numerical predictions 
(especially near the lower transition). Photographs were taken of many of the wave 
patterns, and some of the flow pattern evolutions were recorded by video tape. 

3. Description of the numerical model 
The model is based upon the NavierStokes equations and is described in Miller, 

Lu & Butler (1991) and in an internal report available from the present authors. A 
brief description of the fundamental aspects of the code is given here. The equations 
are finite differenced in the axial and radial directions, and Fourier modes ('waves') 
are used longitudinally. For the terms involving wave-wave interactions, the Fourier 
transform method is used. That is, the total wave fields are transformed to a 
longitude grid where the quadratic terms needed for the nonlinear tendencies are 
calculated. These are then transformed to spectral space, where the tendencies for 
each wave component are calculated. The meridional grid is stretched to give higher 
resolution near the boundaries. Centred, conservative spatial differencing is used, 
which is accurate to second order for an unstretched grid. (Note that flow velocities 
are not large enough in the present cases to require such methods as upwind 
differencing.) The computer code permits the calculation of axisymmetric states, 
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linear waves (based on a previously computed axisymmetric state), single or multiple 
waves with feedback to the mean state but not between waves, and multiple waves 
with all interactions included. In the latter case, a wave factor can be used (i.e. the 
set of waves considered is n, 2n, 3n,.  .. , Nn, where n and N are positive integers). All 
Fourier components (including the axisymmetric field) use the same finite- 
differencing scheme. 

The boundary conditions assumed in the calculations are no-slip on all four 
surfaces, no heat flux on the inner and upper surfaces, and fixed temperature on the 
outer and lower surfaces. The profile on the lower surface was logarithmic in radius, 
and the profile on the outer sidewall was linear in height. The vertical temperature 
difference on the outer wall was taken to be 5% of the radial difference (warmer 
above), which was approximately equal to that measured by the thermistors in the 
apparatus. 

4. Experimental results 
4.1. Transitions between waves and axisymmetric flow 

All experiments were begun by first allowing the circulating baths to  equilibrate to 
the desired temperature. (The arithmetic mean temperature of the two baths was 
always near 21 "C.) An additional half hour (minimum) was allowed to make sure 
that the apparatus itself had thermally equilibrated. Then, the flow cell was 
vigorously mixed by a sequence of rapid reversals of rotation which created strong 
turbulence within the flow cell. The turntable was then immediately set to the 
desired rotation rate. All results discussed here were obtained by allowing the 
experimental system and the flow to equilibrate with conditions of constant rotation 
rate and temperature difference. Well inside the wave regime, it was possible to 
ascertain that waves were present within a few minutes, but near the transition curve 
(especially the low transition) i t  was necessary to  wait several hours before 
concluding whether a given set of imposed conditions yielded an axisymmetric or a 
wavy state. It should be emphasized that great care was required in thermal 
condition in order to obtain consistent results, especially near the lower transition. 
In  particular, it was necessary to place foam insulation in the centre and over the 
sides and top of the apparatus and to wait long enough ( a )  for the apparatus to attain 
an equilibrated mean temperature before starting the experiment and ( 6 )  for the flow 
to equilibrate before ending the experiment. The transition results are summarized 
in figure 2 .  It is seen that the transition curve in Taylor number (Ta)-thermal Rossby 
number (Ro) space is knee-shaped, similar to that of the conventional annulus. For 
the lower part of the transition curve, the transition points were determined by 
varying the temperature difference for a fixed rotation rate, and the upper transition 
points were determined by varying the rotation rate for a fixed temperature 
difference. Note that the wavenumber observed is a function of the external 
parameters, with the longer waves ( k  x 6 )  apparent near the upper transition. This 
behaviour is also observed in the conventional annulus experiments (e.4. Fowlis & 
Hide 1965). Hignett et al. (1981) measured a parameter &( = 2 Q ( b - a ) b / g a A T ) b ~ ;  
a measure of the ratio of the thickness of the upper thermal boundary layer to that 
of the Ekman layer) a t  the upper transition and obtained a value of 3.4. We obtained 
the somewhat larger value of 4.0. 
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FIGURE 2. Transition curves in thermal Rossby number-Taylor number space. The squares mark 
transition points determined experimentally, and the triangles are those determined with the 
numerical model, with the wavenumber shown. For reference, the dashed line represents a 
horizontal temperature difference of 3 "C;  lines of constant rotation rate are vertical (not shown). 
The definition of thermal Rossby number is: Ro = gaATd/4122(b-a)2; for Taylor number: 
Ta = 452% 4/v2, 

4.2. Evolution from short to long waves 
Figure 3 shows a summary of the initial (first) and final wavenumbers observed. Near 
the transition curve, it was observed that the initial wavenumber persisted 
indefinitely, or in some cases and depending on how close it was to the transition 
curve, there was a transition to a wave pattern with fewer lobes. This transition 
would occur by one of the lobes becoming weak and eventually decaying completely, 
with the other lobes eventually moving around to fill the annulus with uniform 
spacing. Further from the transition curve, there were cases of further transitions to 
longer waves, similar to that just described, so that the equilibrated wavenumber 
was more than one less than that of the initial wave. In the cases where the initial 
waves filled the annulus width and the transition to  fewer waves was due to the 
sequential loss of individual waves, the initial wavenumber was at most about 20. 

Well within the wave regime it was observed that the first asymmetries were 
smaller-scale waves (wavenumber typically 3040)  which developed very quickly 
(within a few minutes) and were initially confined to a region near the outer wall. An 
example of this pattern is shown in figure 4 (a). These small waves gradually (and non- 
uniformly) spread inward to fill the annulus width and reduce somewhat in number 
(the waves slowest to spread inward were generally consumed by the others), and a 
large-wave pattern would eventually become dominant (figure 4b). However, the 
observers were not able to track particular short waves that survived and eventually 
become long waves. Instead, after the short waves filled the annulus, there was a 
transition period of irregular flow which gave way to a large-wave pattern. 
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FIGURE 3. Summaries of observed initial/equilibrated ('final ') wavenumbers in the laboratory 
experiments. An asterisk after a number indicates that it is approximate and that the flow is 
irregular. An asterisk alone indicates that the flow was irregular and the wavenumber was 
indeterminate. 

4.3. Structure of the equilibrated waves 
A general description and photographs of some of the equilibrated wave structures 
(horizontal planforms) will now be given. The waves described in this subsection were 
fairly regular and apparently steady over the time viewed. It is possible that long- 
term vacillation or other time-dependent behaviour existed but we have not yet 
searched for such phenomena. Three cases will be discussed : (1) slow rotation and 
moderate differential heating, (2) slow rotation and strong heating, and (3) 
moderately fast rotation with moderately strong heating. 

Case 1 is for a rotation period of 10 s and a AT of 3.2 "C, which is near the upper 
part of the lower transition. A photo of the flow pattern is shown in figure 5 ( a ) .  There 
are nine waves, with a slight irregularity of spacing which later became quite regular. 
The initial wavenumber observed was 13, and there was a gradual evolution to the 
nine-wave pattern (with individual waves weakening and dropping out). The waves 
fill the annulus width and lack any small-scale structure, and there is a definite spiral 
appearance, i.e., a westward phase shift with increasing radius. 

Case 2 is shown in figure 5 ( b ) ,  which is for Q = 45"/s and AT = 15.8 "C. This point 
is near the extreme upper transition curve. There are six regular waves, with a 
somewhat less spiral nature and with much sharper features than in Case 1. The 
initial wavenumber was 15, which was manifested by waves first appearing near the 
middle of the annulus. 

Case 3 is shown in figure 4 ( b ) ;  here 0 = 9O"/s and AT = 10.5 "C. This is the case 
described in the previous subsection, in which there were initially about 30 waves. 
The quasi-equilibrated pattern has eight waves with some irregularities (which were 
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FIGURE 4. Photos of early waves (a) and equilibrated waves (6) for the case with a = W0/s and 
AT = 10.5 "C (Ro = 0.011, TU = 1.305x 108). 
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FIGURE 5. Photos of the equilibrated wave pattern for the cases (a)  52 = 36"/s and AT = 3.2 "C 
(Ro = 0.021, Ta = 2.09 x 105) and ( b )  52 = 45'/s and AT = 15.8 "C (Ro = 0.065, Ta = 3.26 x 105). 
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FIQURE 6. Photo of the quasi-equilibrated flow pattern for the case with Q = 12Oo/s and 
AT = 6.9 “C (Ro = 0.0040, Ta = 2.32 x lo6). 

long-lived) and with some small-scale features, including sharp gradients in general. 
Despite the irregularities, it is clear that this flow is dominated by wavenumber 8. 
The flows described in the next sub-section are not so easily characterized. 

4.4. Irregular waves and propagating convection cells for large rotation and heating 

For strong heating and rotation, the flow pattern which eventually formed was 
irregular, with a mix of features that resulted in the inability of the observers to 
count a definite number of longitudinal waves. The transition to irregular flow was 
not sharp, with the onset of irregularity indicated by long-lived irregular spacing 
between waves and/or small-scale features which distorted the shape of the long 
waves. Often, ‘double waves ’ appeared, which were apparently two long waves 
which were very close together and which remained so for as long as the flow was 
observed (z 1 hr). An example of a flow just inside the irregular regime is seen in 
figure 6, and a small-scale, transient feature is seen a t  about the ‘five-o’clock’ 
position, a short distance eastward of a long-lived, large-scale wave. This feature 
formed at  the outer wall, later propagated inward to fill the annulus width, and 
eventually decayed. This type of phenomenon occurred for fast rotation and 
moderate to strong heating. We speculate that these are centrifugally induced 
buoyant convection cells. 

5. Numerical results 
5.1. Transition to wave flow and structure of linear waves 

Since we obtained only flow pattern data from the experiments, the calculation of the 
transition curve and comparison with the laboratory results offers the most 
quantitative verification of the numerical and experimental procedures. The 
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FIQURE 7. Steady axisymmetric solutions for three combinations of rotation rate and temperature 
difference. Upper row: l2 = 0.74 s-I, AT = 15 "C (Ro = 0.070, Tu = 2.90 x 106). Middle row : 
G? = 0.46 s-l, AT = 3 "C (Ro = 0.036, Tu = 1.12 x 106). Lower row: 52 = 90"/s, AT = 0.8 "C (Ro 
= 8.25 x Tu = 1.305 x 10s). (a) Temperature deviation from a reference value ( "C) ; ( b )  
azimuthal velocity, positive for eastward flow (cm/s); and (c) stream function, the gradient of 
which is proportional and perpendicular to mass flux (circulation is counterclockwise, parallel to 
the contours). The outer (warm) wall is on the right. Dashed contours indicate negative values. 

technique of numerically calculating the transition curve was to calculate a steady 
axisymmetric state for a given point in parameter space and then to calculate the set 
of linear waves with wavenumber near that observed experimentally to find the 
parameter values at which a wave fist becomes unstable. The same technique and 
an earlier version of the computer code (before adding the capability of including 
wave-wave interactions) was used by Miller & Butler (1991) to calculate the 
transition curve for the conventional annulus of Fein (1973) ; excellent agreement 
with the experiments was obtained, especially in the case of the rigid-lid annulus. The 
calculated transition curve for the present annulus is shown in figure 2. It is seen that 
the upper part of the calculation curve is shifted downward in comparison with the 
experimental curve. Predicted wavenumbers and the calculated Taylor number a t  
the knee agree very well with the experiments. 

As previously noted, the experimental results were even farther from the 
numerical predictions than shown in figure 2 before more attention was paid to 
thermally insulating the apparatus from the surrounding air. Specifically, the lower 



Baroclinic instability in a cylindrical annulus 507 

part of the laboratory curve (which was the only part completed before installing the 
additional insulation) was shifted further upward. The reason the results are still 
shifted may be related to imperfect temperature boundary conditions in the 
experiment. We suspect that the imperfections are a combination of non-zero heat 
fluxes through the Plexiglas lid and inner wall and other influences, which result in 
an effective temperature difference felt by the fluid that is somewhat smaller than 
that measured by the thermistors. Hignett et al. (1981) discussed the importance of 
ensuring zero heat flux through the upper lid, near which heat transport by the fluid 
flow is quite small. The temperature a t  the top of the flow cell can therefore be 
influenced by only a small heat flux through the plastic lid. This problem would 
indeed be more evident near the upper transition, where the interior static stability 
is more important in the transition. We wondered whether our measurement of the 
horizontal temperature difference on the lower surface might be inaccurate, but the 
thermistors were located very near the surface, and the isotherms within the copper 
plate must be very nearly vertical, based on heat flux calculations. A possibility is 
that the thin layer of Kalliroscope particles which settled on the surface inhibited the 
heat transfer enough to reduce the actual temperature difference. Another 
consideration was whether the thermal expansivity should be taken to be dependent 
upon the local temperature, but agreement was not improved by using a temperature- 
dependent thermal expansivity in the calculations. Although we have not been able 
to determine the reason for the systematic difference, we conclude that there is an 
imperfection in the experiment which reduces the effective temperature difference for 
large differential heating. Assuming that adjustments can be made in the external 
parameters to offset a systematic error, we proceed to use the numerical results to 
study the flow structure and underlying physics of the observed experimental results. 

The structure of the steady axisymmetric flows for three points near the transition 
curve are shown in figure 7. These points are near the lower transition, the knee, and 
the upper transition. The temperature fields indicate that most of the heat enters the 
system through the outer wall, and the system is cooled by the inner part of the 
bottom surface. In  the more highly convective cases (near the upper transition), the 
heating by the outer part of the lower surface is also significant. The azimuthal 
(eastward) wind consists of single jet structures near the top and bottom which are 
prograde and retrograde, respectively. 

The wave structures (figures 8 and 9) corresponding to the axisymmetric fields 
discussed above can be compared with those of Miller & Gall (1983), who performed 
similar calculations for the conventional annulus. The structure of the waves for both 
configurations is fundamentally that of the Eady (1949) mode of baroclinic 
instability. There is a secondary maximum in wave vertical motion, but not in 
temperature, near the inner and outer walls. The latter fact differentiates the present 
structures from those of the conventional annulus studied by Miller & Gall, in which 
the temperature wave amplitude has maxima near the sidewalls. (However, it should 
be noted that the model of Miller & Gall assumed hydrostatic balance for the linear 
waves, an assumption that is not made here. The maxima near the sidewalls may not 
be so extreme when the hydrostatic assumption is not used.) Another aspect of the 
wave structures which is worth pointing out, and which may be seen in both the 
numerical and experimental results, is that for smaller rotation rates there is a 
substantial phase tilt westward for increasing radius, resulting in a spiral appearance. 
For higher rotation, this radial tilt is much smaller (compare figure 9 with figure 8). 
This aspect was noted by Miller & Fowlis (1986), who performed experiments in an 
apparatus with a temperature gradient imposed upon both the upper and lower 
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Contour interval = 0.1 Temperature 
Contour interval = 0.2 
Shift = 0.32 

Vertical velocity Contour interval = 0.001 
Contour interval = 0.2 
Shift = 0.27 

Contour interval = 0.01 Northward velocity 
Contour interval = 0.2 
Shift = 0.36 

Contour interval = 0.005 Eastward velocity 
Contour interval = 0.2 
Shift = 0.36 

FIGURE 8. Fastest growing linear eigenmode components corresponding to the case shown in the 
upper row of figure 7. The wavenumber is 5. The wave is defined by (using temperature as an 
example) : Tk = Re ( Tk eikA), where T, is a complex Fourier component and can be written as I ZJe'*@. 
The quantities plotted are (a) IT,I (amplitude) and (b)  0 (phase angle divided by n). The quantity 
'shift' must be added to 0 if the determination of relative phases between components is desired. 
Dashed contours indicate negative values; phase tilt is westward for increasing phase angle. 
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Contour interval = 0.2 Temperature 
Contour interval = 0.05 
Shift = 0.30 

Contour interval = 0.002 Vertical velocity 
Contour interval = 0.2 
Shift = 0.34 

Northward velocity Contour interval = 0.01 Contour interval = 0.2 
Shift = 0.20 

Eastward velocity Contour interval = 0.005 
Contour interval = 0.2 
Shift = 0.32 

FIGURE 9. As in figure 8, but for the caae shown in the lower row of figure 7. 
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surfaces, and who noted that the same spiral effect occurs for waves in a conventional 
annulus when the depth is small, relative to the width. 

5.2. Evolution to longer waves and structure of the short-wave instabilities 
The initial conditions used for all the time-dependent calculations were solid-body 
rotation and isothermal interior conditions (at the arithmetic mean temperature of 
the two lower corners), with the temperature gradient on the boundaries 
instantaneously applied at  time zero. Since the viscosity of the working fluid (water) 
is nearly an order of magnitude larger than the thermal diffusivity, this approximates 
the initial conditions of the experiments. From the experimental results, there is a 
variety of wavenumber transitions which are of varying difficulty to model. For 
example, the transition from wavenumber N to N -  1 would be fairly simple to model 
if wave-wave interactions were not important. If that were the case, then a limited 
number of waves (minimally, NandN- 1 )  could be used. However, while a model run 
of this type may be able to qualitatively reproduce the experiment, one cannot be 
sure whether the result from such a calculation would be the same as one with fully 
nonlinear interactions included, or even whether a run without wave-wave 
interactions but with a broad range of waves would choose the same wavenumber as 
the experiment. Here, we give some results from both methods. 

Calculations were performed for the case of 52 = 90°/s and AT = 2 O C .  The 
experimental observation near this point was that the initial wavenumber was ten 
and the equilibrated wavenumber was eight. It is just above the lower transition 
curve, at Tu = 1.3 x lo6. Although details were somewhat different, the gross results 
in terms of initial and final wavenumber were nearly the same whether wavewave 
interactions were included or not. Furthermore, the results resemble those of the 
experiment in the structure of the waves and in the fact that an irregular wavelength 
persisted for a very long period of time (the model was run for 136 min in fully non- 
linear mode, wave numbers 1-20, and for 240 min with wavenumbers 7 to 12). Early 
in the fully nonlinear run, many waves, ranging from 8 to 13, had significant 
amplitude and an irregular ll-wave pattern was present in the total fields. (However, 
wavenumber 11 was not the largest-amplitude Fourier component.) A wavenumber 
12 was first observed in the run lacking wave-wave interactions. At the end of the 
integration time, wavenumber 8 was dominating the run lacking full interactions, 
and wavenumbers 8 and 9 were still competing in the fully nonlinear run, with an 
irregular 9-wave pattern present in the fields. A time sequence of the fields from the 
fully nonlinear run indicated that the wavenumber transition process was due to 
individual waves weakening and merging with a nearby wave, as discussed in the 
description of the experiments. It should be noted that neither calculation was 
performed until true equilibration, although the flow in the case without wavewave 
interactions seemed to have been settled on wavenumber 8 (i.e. others were small and 
still decaying). The final mean state in both cases has a double-jet structure in the 
zonal wind field, with much weaker thermal wind in the middle of the annulus than 
near the outer and inner regions. 

The phenomenon of transition from initial short waves near the outer wall to long 
waves throughout the annulus was studied with the numerical model in fully 
nonlinear mode and with a wave factor of 5 for the particular case shown in figure 4. 
This set of calculations is not intended to reproduce all aspects of the experiments, 
which do not have such a &fold symmetry. The results do not include the very small- 
scale irregularity that occurs during the transition period, and the wavenumber 
predicted at  the time the integration ended is 10. However, the major aspects of the 
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FIGURE 10. Evolution of kinetic energy spectrum with time for the case with l2 = W0/s and 
AT = 10 "C (Ro = 0.010, Tu = 1.305~ lo6): (a) the calculation with fully nonlinear interactions; 
( b  ) the calculation with wave-mean interactions but without wave-wave interactions. Both 
calculations were performed with waves 5,10,. . . ,95,100 present. 

transition described in the previous section can be simulated using this method. The 
evolution of the longitudinal wave spectrum in one of these integrations is shown in 
figure 10(a) (wavenumber 5,10, ..., 100 were included in the calculations). The first 
wave which attains a significant amplitude is 35, which is in rough agreement with 
the experiments. Later, wave 25 becomes large and 35 is nearly gone; viewing an 
animation of the model results shows that this transition occurs through the 
disappearance of individual waves. Wave 10 is the next to dominate the spectrum, 
and it persisted until the end of the integration (which was for 10 min). As in the 
experiments, there was no indication that any of the long waves were 'parented ' 
from any of the earlier, smaller waves. 

Based upon both the experimental and the fully nonlinear numerical results from 
the case just discussed, an obvious question to ask is whether the wavenumber 
evolution involves wave-wave interaction, or whether it is simply competition 
among the waves for energy from the mean state. To address this question, another 
numerical integration was conducted on the above case, but with no wave-wave inter- 
actions and with the same waves included. These results are shown in figure lO(b ) .  
It is evident that the spectral evolution differs markedly from that of figure 10 (a) .  The 
transition from wave 35 to wave 10 occurs in an unbroken stepwise sequence with 
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Contour interval = 1.0 

Contour interval = 0.04 Max = 0.125 
Min = -0.137 

Contour interval = 0.02 Max = 0.122 

FIQURE 11. Azimuthal mean fields for the fully nonlinear calculation referenced in figure 10 120 s 
after the start of the calculation. See figure 7 for definitions, units, and contour scheme. (a) 
Temperature, ( b )  azimuthal velocity, ( c )  stream function. 

every wave between 35 and 10 dominating for some period of time. These simulations 
clearly show that wavewave interactions are important in the evolution of the 
longitudinal wave spectrum, although the initial and final dominant wavenumbers 
are nearly the same for the two calculations. 

Of major interest is the character of the short waves that occur early in the 
experiment, i.e. whether they are of the Eady or Rayleigh-BBnard type. In order to 
elucidate the nature of the initial (short-wave) instability, plots of the longitudinal 
mean flow and dominant wave (number 35) after 2 min are shown in figures 11 and 
12 for the fully nonlinear integration. The region containing the wave is 
approximately the position of strong horizontal temperature gradient, and the 
vertical gradient is positive (i.e. temperature increasing upward) in the upper two- 
thirds of the region containing the wave. Recall that initially the gradient was fully 
contained in the first grid interval from the boundaries, the interior being isothermal. 
In the vicinity of the wave, the fluid is initially heated from below and from the side. 
The flow is clearly acting to move the temperature gradient into the interior and to 
spread it throughout the volume. The structure of wave 35 is that of a baroclinic 
wave of limited radial extent, although there exists some radial structure in the 
amplitude plots. The (vertically) bimodal structure in radial velocity component, the 
westward phase tilt, and the phase relationships between temperature and velocity 
components are those of baroclinic waves. The vertical velocity component is smaller 
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Contour interval = 0.05 Wave 35 amplitude 
Max = 0.417 

Contour interval = 0.002 Wave 35 amplitude 
Max = 0.018 

Contour interval = 0.005 Wave 35 amplitude 
Max = 0.047 

Contour interval = 0.2 Wave 35 phase 
Shift = -0.16 

FIQURE 12. Wave number 35 components corresponding to figure 11.  See figure 8 for definitions 
of quantities plotted. (a) Temperature, ( b )  vertical velocity, (c, d ) northward velocity. 

than the horizontal velocity, although it is of the same order of magnitude. The 
northward and vertical heat fluxes of the non-axisymmetric flow are of similar 
magnitude, although the vertical heat flux is the larger by about 10 %. The total heat 
flux (upward and northward) of the axisymmetric flow is about $ of that of the wave 
flow, and the axisymmetric vertical heat flux is about 2.5 times larger than the 
axisymmetric northward heat flux. 

5.3. Structure of the equilibrated ' long-wave ' jlow 
The modelling of the equilibrated, regular long-wave flow is not as computationally 
demanding as the simulations of the evolution of the flow, since one can use the 
wavenumber observed in the experiment as a wave factor and include only a few 
harmonics of that wavenumber. As mentioned in the previous section, this would not 
test the model's ability to select the same wavenumber observed in the experiments. 
In this section we describe some results of long-term integrations, some of which were 
specified a priori to have the observed wavenumber, and in some of which the 
wavenumber was not specified. 

We shall discuss the results of calculations for three cases: for the highest 
temperature difference used in the experiments (15 "C) and with rotation rates of 
45"/s, 60°/s, and 90°/s. The slowest rotating case is for a rotation rate about 20% 
higher than that at the transition between axisymmetric and wave flow. 

We discuss the 60'1s case first. We computed results using a broad range of 
wavenumbers (2,4, . . ., 24) and allowed the equilibrated wavenumber to be chosen by 
the model. The selected wavenumber was 8, which agrees with the experiments. 
Temperature, pressure, and vertical and horizontal velocities are shown in figure 13 
for non-dimensional height = 0.206, which is just above the level of maximum 
temperature wave amplitude. The strong easterly flow near the outer wall is broken 
by the wave, where strong northward and southward flow interrupts the zonal wind. 
This north-south flow is in phase with the temperature field; i.e. the northward 
(southward) flow transports hot (cold) fluid. The flow slightly leads the temperature 
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Contour interval = 1.0 Max = 7.65 Contour interval = 0.04 Max = -0.308 
Min = -0.599 Min = 0.76 

Max = 0.073 Contour interval = 0.005 Max = 0.0447 
Min = -0.0080 

FIQIJRE 13. Plots of selected quantities for the equilibrated flow at height 0.412 cm for the fully 
nonlinear calculation (waves 2 ,4 ,  ..., 22,24) for the case with C.2 = 60°/s and AT = 15 "C (Ro = 
0.035, Tu = 5.80 x 105). The quantity labelled 'pressure' is actually pressure deviation from 
hydrostatic, divided by a reference density, and temperature is deviation from a reference value 
("C). All units are c.g.s. (a)  Temperature; ( b )  pressure ; (c) horizontal velocity; ( d )  vertical velocity. 

wave to result in eastward propagation. The wave structure is frontogenetical, i.e. 
there is a ' cold front ' region of strong temperature gradient which is accompanied by 
low pressure, rising motion, and strong shear in the horizontal flow. The (interior) 
region of rising motion is much narrower than the general downward motion, as the 
coinciding region of warm fluid is narrower than that of the cold fluid, i.e. behind the 
cold front there is a broad region of cold, sinking fluid. Characteristic of the Eady 
instability, the vertical motion is apparently a response to the thermal field and not 
a cause of it, since the presence of stable stratification would tend to cause upward 
(downward) motion to be cooling (warming). The action of the wave in reducing the 
horizontal temperature gradient results in the vertical shear in the mean azimuthal 
velocity near two-thirds the distance from the inner to outer wall to be noticeably 
reduced from the steady axisymmetric field which was more nearly radially uniform. 
There is a double-jet structure, with strong jets in the corners near the outer wall and 
weaker jets near one-third the distance from the inner t o  outer wall (not shown). 

In  comparison with the above case, the more slowly rotating case (wavenumber 6, 
with harmonics 12 and 18, was specified) equilibrates with a much smaller amplitude 
wave and less of a frontal structure (though the asymmetry of the pressure highs and 
lows is still present). There is also less of an effect upon the mean azimuthal wind (i.e. 
no split jet structure). 
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Contour interval = 2.0 

Contour interval = 0.02 Max = 0.099 
Min = -0.099 

Contour interval = 0.01 Max = 0.091 

FIGURE 14. Equilibrated azimuthal mean fields for the fully nonlinear calculation, D = W"/s 
and AT = 15 "C (Ro = 0.015, Tu = 1.305 x lo6). 

Like the moderate rotation case, the fastest-rotating case (8 = 90°/s) was run in 
fully nonlinear mode, with waves 2 to 24 (wave factor of 2). Wavenumber 6 was 
selected by the model, a longer wave than the 6Oo/s case which is in agreement with 
the experiments (wave 7 was observed). Nonlinear aspects, including frontal features 
and feedback to the mean flow, are the strongest of the three cases. The shear of the 
horizontal flow is strong and confined to the region of the cold front, consistent with 
the pattern observed in the experiments. The mean horizontal temperature gradient 
is actually reversed in the interior, where there is virtually no vertical shear of the 
azimuthal wind and there is a Ferrell cell-a region with rising motion north of 
sinking motion (figure 14). 

6. Summary and concluding comments 
A gross description of the flow characteristics of a rotating, thermally driven 

cylindrical annulus with the horizontal gradient imposed upon the lower horizontal 
surface has been given, in terms of both laboratory experiments and numerical 
calculations. The vertical depth is about one-third the radial width. The transition 
diagram, in thermal Rossby number-Taylor number space, between axisymmetric 
and wave flow has been determined, and it is shown that the shape of this curve is 
similar to that of the conventional, side-heated and -cooled baroclinic annulus. 
Agreement in the transition curve between numerical calculations and the 
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experiments is fairly good, although there is noticeable discrepancy in determining 
the upper transition. Agreement in predicting wavenumbers, both near the transition 
and within the wave regime, is very good. Away from the transition curve and within 
the wave regime, there is an evolution from larger to  smaller wavenumbers as the 
flow equilibrates, which is well captured by the numerical model for those cases 
studied. (Modelling the cases of irregular flow was not attempted.) Far enough into 
the wave regime, the initial waves are of small scale both in longitude and in latitude 
(radius), and they form near the outer wall and subsequently grow inward, 
decreasing in number as the slower-growing waves give way to the more vigorous 
ones. The numerical studies indicate that these waves are active in a region with 
strong horizontal temperature gradient and with positive vertical stratification 
through most of the depth. There is a period of irregular flow before a transition to 
an equilibrated long-wave state. The equilibrated wavenumber is not a simple 
monotonic function of any of the external parameters, although it is smallest near 
the upper transition curve and usually increases with decreasing temperature 
difference. The structure of the equilibrated waves includes a horizontal tilt from 
southwest to northeast which decreases with increasing rotation. As in the 
conventional annulus, the equilibrated flow becomes spatially irregular for large 
enough Taylor number and differential heating. For rapid enough rotation and large 
enough heating, small-scale features appear which continually form near the outer 
wall and propagate inward before merging with the larger-scale flow. It is speculated 
that these latter features are centrifugally induced buoyant plumes. 

Miller & Fowlis (1986) and Hathaway & Fowlis (1986) found that the system with 
the horizontal gradient imposed upon both horizontal surfaces has a regime diagram 
which does not have an upper symmetric regime. This finding was also the case in the 
numerical study of Miller & Fehribach (1990) for a similar spherical system. The 
primary reason cited for this finding was that the horizontal conducting boundaries 
prevent the interior static stability from indefinitely increasing as the thermal 
forcing is increased. While the thermal advection certainly strengthens with the 
Hadley circulation, there is a statically unstable region near the horizontal boundaries 
in those systems, which allows the waves to  grow. In the present system, where only 
the lower horizontal surface is thermally conducting, there is indeed a statically 
unstable region for strong thermal forcing above the lower boundary near the outer 
wall. However, the presence of the thermally conducting outer wall prevents this 
region from becoming large enough to preclude the upper symmetric regime. 

A motivation for studying the present system was the expectation that it would 
be more like the Earth’s atmosphere than the side-heated and -cooled system in the 
sense that the sidewalls would have less influence on the flow. As discussed by Miller 
& Gall (1983), the sidewalls have a strong effect on the transition between wave flow 
and axisymmetric flow in the conventional annulus, at least when the vertical depth 
is not thin, relative to the annulus width. One reason for this importance is that when 
both horizontal surfaces are thermal insulators the isotherms are free to be advected 
by the Hadley circulation, which results in the temperature gradient being pushed 
into the corners (upper-inner and lower-outer). Eddy vertical velocity in the corner 
regions is significant in the energy conversion process, and thermal and mechanical 
dissipation of the eddies is also important there. 

In  addition, the prediction of the transition from axisymmetric flow to baroclinic 
waves by quasi-geostrophic theory is much better for the new annulus than for the 
conventional annulus, a t  least for the usual case in which the vertical/horizontal 
aspect ratio for the latter system is of order one or greater. The tall vertical height 
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results in the internal isothermal slope being greater than one (i.e. closer to vertical 
than to horizontal) for most of parameter space, a violation of an assumption of the 
quasi-geostrophic theory of Barcilon (1964). Our expectation was fulfilled that the 
present system would be better predicted by the simple quasi-geostrophic theory of 
Barcilon (as extended by Hide, 1969 for arbitrary aspect ratio) than for the 
conventional annulus studies by Miller & Gall (1983). To be specific, the isothermal 
slope in the centre of the annulus near the knee of the transition curve is about 0.4 
for the present system, which gives a prediction of the critical Ta of 1.7 x 104, in 
comparison with the experimental and numerical value of 1 x lo6. While a factor of 
6 is not a very good quantitative prediction, it is better than the comparison for the 
square, conventional annulus cited by Miller & Gall (1983), in which the difference 
between theory and numerical results was a factor of 50. Comparisons of numerical 
calculations with the theoretical predictions lead to the conclusion that the 
improvement is due to three effects, which when added to the Miller & Gall case give 
increasingly better comparisons with the theory. The fist effect is the use of a no- 
slip upper boundary, which increases the Ekman flow and hence the basic-state 
thermal advection at the top of the flow cell. The second effect is the height/width 
aspect ratio. Numerical calculations were made for a side-heated and -cooled annulus 
with no-slip boundaries and with the same geometry as the present, new annulus. In 
that case, the numerically determined isothermal slope near the knee is about 0.58, 
and the theoretically predicted Ta is about 13 times smaller than the numerical 
result. The third effect is of course the thermal boundary conditions of the new 
annulus. For the present geometry, the theory predicts the critical wavenumber near 
the knee to be 5 (this result is not dependent on the isothermal slope). This prediction 
is actually better for the side-heated and -cooled case, in which the numerical model 
predicts 6, than for the new annulus (wavenumber 9). The theoretical prediction of 
the internal Brun&Vaisalla frequency at the knee is very good for the present 
geometry with both boundary temperature configurations. 

Future work with this system will investigate whether there exists interesting 
long-term time-dependent behaviour such as vacillation, and whether the numerical 
model agrees with quantitative measurements of wave amplitude. Experiments will 
be performed with the apparatus instrumented with thermistors to measure the 
temperature at an array of points on the upper lid of the apparatus, giving a 
quantitative measure of the amplitude and phase propagation of the waves while 
minimally interfering with the flow. This work should increase the applicability of 
the experiments to geophysical situations and allow further comparisons with the 
side-heated and -cooled experiments. 
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